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The new ideas of  bond electronegativity and bond hardness are introduced, 
and a semiempirical density functional approach to the theory of molecular 
electronic structure and chemical binding is outlined. There result effective 
electronegativity equalization procedures that permit calculation of binding 
energies as well as partial charges. By a modelling of the bond electronegativity 
and bond hardness, a density functional interpretation of earlier bond charge 
models is established. Some numerical results are given for diatomic molecules. 
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1. Introduction 

In recent years, density functional theory [1] has been shown to be a versatile 
tool in many branches of  physics and chemistry [2]. In electronic structure theory, 
it has not only produced useful schemes for computation but it has also provided 
a framework for introducing new concepts [1]. Among others, one has the 
concepts of  chemical potential [3] (the electronegativity of  chemistry), chemical 
hardness [4] (both global [5] and local [6]) and softness [7], Fukui function [8], 
and local temperature of the electron cloud [9]. Some of these quantities had 
been introduced earlier, and were already known to be very useful in chemistry, 
but they now have received a stronger basis. With the help of  two new conceptions, 
bond electronegativity and bond hardness, the present paper  further explores the 
applicability of the density functional formalism for understanding of the 
chemical bond itself. 

* Dedicated to Professor J. Kouteck~) on the occasion of his 65th birthday 

** Present address: Heavy Water Division, Bhabha Atomic Research Centre, Bombay 400085, India 
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Density functional theory (DFT) is exact and it is a theory of  electron density. 
It therefore should contain the theory of  chemical bonds without resorting to 
orbitals. That is the subject of  the present work. 

Charge density reorganization and transfer play an important role in molecule 
formation. Concepts and methods have been developed in chemistry where the 
net electron densities localized within certain regions (instead of  the whole 
electron density as a point function) are of prime concern. Examples are the 
atomic charges within molecules [10], in general shared unequally between atoms 
in a molecule. Although these charges find definition within conventional orbital 
theories, for example, through Mulliken population analysis, they can also be 
predicted through simple procedures like electronegativity equalization [11]. 
Electronegativity equalization was initially proposed without the rigor of theory, 
but it has recently found rigorous justification [3, 12, 13]. 

Atomic charges correlate well with many properties [12], but simplified point 
charge models sometimes fail to predict good energies [10, 14]. The main reason 
is that charge transfer between atoms is set proportional to their electronegativity 
difference; hence for homonuclear  molecules, no net charge transfer is predicted. 
Models based on atomic electronegativities alone fail to take proper account of 
covalent binding, although empirical incorporation of covalent terms can lead 
to reasonable results for energies [15, 16]. Charge accumulation in the bond 
region plays a very important role in chemical binding [17], however, and so 
may be expected to explicitly appear in the formulation. 

To describe molecule formation within a density theory, we propose to invoke 
the concept of bond electronegativity, by assigning an electronegativity value to 
the bond region (normally higher than the isolated atom values) [18]. This is 
rigorous since the chemical potential is defined at each point in space [3, 19]. 
For any region an electronegativity can be assigned; at equilibrium it must be 
the same for all regions. A higher electronegativity at the bond center when two 
atoms are brought to the equilibrium distance without charge transfer [20] can 
account for charge transfer to the bond region, even for homonuclear molecules. 
This new bond charge - bond electronegativity model thus involves three point 
charges in a diatomic molecule - two on the atomic sites and another at the bond 
center. Binding energy is predicted as the energy involved in this charge transfer 
plus the electrostatic interaction among all charges. 

A bond charge model for a chemical bond was earlier introduced involving two 
localized charge centers at the two atomic sites and a bond charge[21-23]. The 
bond chafge was considered to be delocalized along the bond and the resultant 
kinetic energy (evaluated from a one-dimensional box model) together with the 
interaction energy of the three charges (calculated using the mean location of 
the bond charge at the bond center) yielded the binding energy. The concern 
was mainly for the potential energy curve and the constants W1 and W2 in the 
total energy expression W ( R )  = Wo+ W I / R  + W2/R 2 were related to the charge, 
force constant and the equilibrium distance. The term Wo was subsequently 
correlated with the bond charge [24] and an electronegativity concept was 



Semiempirical density functional theory 381 

introduced into this analysis [25-28]. In the present study, we shall attach density 
functional interpretation to the constants Wo, W1, W2, by modelling the bond 
electronegativity and bond hardness, thereby obtaining a generalized bond charge 
model based on DFT. We shall also find a close analogy to the classical semi- 
empirical theo"ties of electronic structure [29-30]. 

2. Bond-charge bond-electronegativity model for chemical binding 

The energy of a many-electron system characterized by an external potential v(r) 
is a unique functional [1] of its electron density p(r). During the formation of 
a molecule from the isolated atoms, the electron densities of the atoms undergo 
distortion (mainly in the valence region leaving the core unaltered); also, the 
electron cloud is subjected to a modified external potential. The potential v(r),  
given by - Z / r  for an isolated atom of nuclear charge Z, is now modified due 
to the additional field arising from the nuclei and the charge cloud of the 
neighboring species. Considering the diatomic case for simplicity, the process of 
molecule formation can thus be viewed as a two-step process: first placing the 
unperturbed atoms at a distance equal to the equilibrium distance Re and then 
allowing the charge reorganization to occur with the interaction switched on 
simultaneously. The bonding energy for the molecule AB therefore can be written 
as an expansion in Ap(r) and Av(r), 

a E  = Emo~- ( E ~  E ~ 

[ 6E 6E 
3 ~ r )  Ap(r) d r +  f ~ A v ( r )  dr 

d 

+ second order terms + ZAZE/R. (1) 

This is a completely local formula involving local change in density and local 
change in external potential [31]. Changes are relative to the unperturbed atoms, 
placed, as indicated above, a distance R = Re apart. 

We now develop a semilocal or regional approach by dividing the molecule into 
three regions--the two atomic regions ~'~A and f~n and the bond region DAB. The 
energy, density, and potential changes can then be written as 

AE = A E  A + AEB + A E A B ,  

Ap(r) = ApA(r),~aa + ApE(r) ,,aB+ApAB(r),~aaB, 

Av(r) = AVA(r),caA+AVB(r)rEas+AVAE(r)r~aAB. (2) 

Such a spatial decomposition is not unique; nevertheless, it is useful. Equation 
(1) thus becomes 

AE = tSpA(r~ApA(r) dr+ - -  ApB(r) dr+ - -  6PAn(r) dr 
B 6pE(r)  A. 6pAE(r) 

f aE fo OE + - - a v A ( r )  dr+ - - A v E ( r )  dr 
~ 6VA(r) B 6vB(r) 

+ fa 6~E~ ' AVAE(r) dr+ " " " +ZAZB 
AB 6VABkr) T '  (3) 
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where Avx(r)l,~a x is the potential change in f ix  arising from the charges (nuclei 
as well as electron cloud) occupying the neighbouring regions ( r~O x ) .  The 
integrations extend over the volumes indicated. The functional derivative ,~E/6p 
is the chemical potential Ix which is a constant under equilibrium conditions [3], 
where one expects 6E/6pA=/ZA, 6E/6pB=/ZB, etc. In the present situation, 
however, in which two atoms are brought to equilibrium distance, not an equili- 
brium situation before charge redistribution, one can include a weak r-depen- 
dence of 6E/3p by writing, in each region A, B, AB, 

8E 
-=/xx(r ) =/xx(R ~ + (r  - R~ o (4) 

6Px 

where R ~ is centered in the region f ix .  Using (4) and the formulas 6E/6v(r)= 
p(r), SAp(r) dr=AN, etc., one then obtains from (3), 

= ~ A A N A d - # B A N B + # A B A N A B - t - V [ d , A  �9 f (r-R~ AE dr 
d ~  

A 

B AB 

Here we have introduced the quantity tXAB=3E/3pAB=OE/oNAB, the bond 
chemical potential. Introducing the atomic charges qA, qB and the bond charge 
qA~(q~--AN) and also the dipole moments dA, dA and daB (dx = 
-Sax (r-R~ dr), [5) becomes 

AE = --/.tAq A --/xBqB -- ~ABqAB 

q_ qAqB + qAqAB + qBqAB 
R RA RB 

- I - V ~ A  �9 dA-t-V~tZ B �9 dB-~-V/ , / ,AB �9 dAB 

+ �9 �9 �9 other terms involving dipole interactions, (6) 

where the electrostatic terms have been approximated assuming electrostatic 
interaction between point charges and dipoles. RA and RB are distances of the 
bond charge from atoms A and B. The terms involving the dipoles are very 
important for dealing with polyatomic molecules, e.g. for studying the bent 
geometry of  a triatomic molecule, for which the presence of lone pairs plays a 
vital role. The dipole terms can take into account this effect and thus lead to 
correct predictions of molecular shapes [32]. We neglect these terms for the time 
being. 

Equation (6) includes only first-order terms, however, higher order corrections 
can easily be incorporated, e.g. by considering terms second-order with respect 
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to AN(q). Thus, 

AE = --/-s -- ]/'BqB --/I'ABqAB 

-I'- 'r/Aq2-1 "- 2 2 ~/BqB + ~TABqAB 

+ qAqB + qAqAB + ClBqAB + . . . . (7) 
R RA RB 

Here ~g and 7/B are the atomic hardnesses defined as 7/=�89 The b o n d  

h a r d n e s s  ~TAB is defined as 

1 0~AB (8) 
"qAB-- 2 0 q A B "  

Equation (7) shows that the energy change consists of the charge transfer contribu- 
tion plus the electrostatic interaction between the resulting charges. 

Using the conservation of charge 

qA + qB + qAB = 0, (9) 

(7) can be simplified to 

zx~ = (~AB-- ~A)qA + (~AB-- ~ . )q .  

1 2 

( L) + 2~?AB-~ R R A  qAqB. (10) 

This energy expression can also be viewed as the energy associated with the 
creation of two charges qA and qB at two centers (one near A and another near 
B) at an effective distance apart Refr = [2r/AB + 1 / R  - l I R A - -  1/Ra] -~, the effective 
centers being characterized by effective chemical potentials (/ZA--/~AB) and (/zB - 
/XAB) and effective hardnesses (~?A+ ~?AB-- 1/RA) and (~?B+ ~?A~-- 1/RB) respec- 
tively. 

By minimizing (10) with respect to qA and qB, we obtain 

1 1 1 1 /~B]qn = 0 ' .~ 

( 1 )  [ 1 1 1 ]  
(/ZAB--/ZB)+2 r/B+~TA"--RB qB+ 2~AB-FR RA /~B qA:0 ,  (11) 

which can be solved for qA and qB and hence qAB and the energy. 

Equations (11) can also be obtained through the equalization of effective chemical 
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potential at the two atoms and the bond center, that is by equating the three 
expressions 

/-~a =/~A -- 2"qAqA qB qAB 
R R A ' 

eft qA qAB 
] ' L B  = / ~ B  - -  2~TBqa 

R RB ' 

e f t  qA qB 
/X Bond = /ZAB -- 2 ~TAB qAB 

RA RB 
(12) 

The resulting expression for charge takes a very simple form for homonuclear  
diatomic molecules, 

qA = qB = --lqAB - -  - -  ( J - / ~ b o n d  - -  [ ' / ' a t o m )  

2[r/atom + 27/bond--27-" 1/R]" (13) 

Thus, if the atomic and bond electronegativities and hardnesses are known, one 
has a consistent scheme for the calculation of charges and energies for the 
particular value of R. For heteronuclear diatomic molecules, although the atomic 
and bond charges qA, qB and qAB (------ --qA-- qB) can be calculated, the results will 
depend on the choice of  RA and RB ( R A + R B  = Re)  in the bond. Note that to 
correlate with the atomic charges calculated by other methods, the bond charge 
has to be suitably divided between the two atoms. 

The molecule is here modelled as a collection of  charges. This suggests a dielectric 
model, in which one assumes a dielectric constant for the interaction between 
the charges. Thus, the (q /R)  type of terms in the above equations may be 
multiplied by a factor k, the dielectric constant for the dielectric medium corre- 
sponding to a molecule. 

3. Semiempirical density functional theory 

The connection of the present method with the semiempirical theories of  
molecular electronic structure can be exposed by starting with the energy 
expression in the Hiickel method [29], 

E =Y. a~qr+ Y. 2pr,[3r,. (14) 
r r < s  

for a diatomic molecule, comparing with only the three terms of  (7). One 
establishes an equivalence by identifying the atomic coulomb integral ar with 
the electronegativity Xr(=----tXr), the bond order Prs with the bond charge --qrs, 
and the resonance integral fir, with the bond chemical potential (actually qrs 
-2prs" St, and Xr,( = -Ixrs)= --flrsST~l). A comparison with the Wolfsberg-Helm- 
holtz expression for [3, fl = K .  �89 implies X~s=K. �89 ). The fact 
that the proportionali ty constant K is empirically greater than unity clearly 
indicates that the bond electronegativity before bond formation is higher than 
the average of the atomic electronegativities--consistent with a subsequent charge 
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accumulation in the bond region. The observation that the electrostatic potential 
at the covalent radius is a measure of the chemical potential [33] also argues 
that the bond chemical potential (before bond formation) should be roughly the 
sum of atomic chemical potentials. 

The equivalence of the energy expression of (7) with Hiickel theory is in fact 
complete only for a homonuclear diatomic molecule. The Hfickel method of 
energy minimization with respect to the coefficients is equivalent to a minimization 
with respect to charges [34] (also equivalent to effective electronegativity equaliz- 
ation [13]). However, the evaluation of charges requires E to have a nonlinear 
dependence on q. In Hiickel theory, the relation qAB = X/qAqB " SAB provides the 
nonlinearity; we have not assumed this. For the polyatomic case, furthermore, 
equivalence is lacking due to the summation over molecular orbitals. Thus in 
general the present approach provides a simple semiempirical density functional 
theory, much like but not identical with the Hiickel method. 

Here, the nonlinear dependence of E on q enters (7) through higher order terms. 
Modifications of the Hiickel method by modifying the a-parameter  to take into 
account the charge-dependence-  the so called to-technique [35], i.e. 

0 
a , = a r - - W f i ' q r - - W ' f l  Z qs, (15) 

r ~ : s  

is equivalent to adding higher order terms involving hardness (~r~Wf i )  and 
potential R -1 ~ w'fi etc.). The modified/3-version of Lennard-Jones,  Longuet- 
Higgins and Salem [29] is analogous to considering the bond hardness terms. 

The inclusion of hardness corrections may be seen to be equivalent to including 
the electron repulsion terms in PPP theories [30]. The energy expressions in PPP 
theory are: 

E =�89 , 
l , J  

F. = H,~i~189 E pj:(ii IJJ), 
j ~ i  

c o r e  1 . . . .  F~= H,: -~p,j(,,lyy). (16) 

A comparison of (16) with (7) shows a close connection between the two, with 
,~ c . . . . . . . . . .  =(ii[ii)" (ii[jj). The definition the identifications /zi H ,  , / z i : - H  0 , ~i , ~u= 

of the atomic hardness as the effective interatomic repulsion integral is known 
from the Pariser approximation (I-A) [30] and the Parr-Pearson definition of 
hardness [4]. The bond hardness represents the interatomic electron repulsion 
integral. The presence of electron re'pulsion is reflected in increased hardness. 

This connection can be elaborated using the recent definition of local hardness 
[6]. Thus using 

1 f 62F 
~7(r) =~-~  6p(r)~p(r,)P(r '  ) dr', (17) 
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where the universal functional F(p ] (= E [p ] -S v(r)p (r) dr) is the kinetic energy 
plus the electron repulsion, it can be shown that in the valence-only picture, the 
kinetic energy part of the functional F does not contribute-hence only the electron 
repulsion contribution (classical electrostatic and exchange correlation) deter- 
mines the hardness. This argument can be applied to both atomic and bond 
hardnesses. The global hardness can be obtained from the local hardness using 
the relation ~ = S ~7(r)f(r) dr, where f(r)(=~p(r)/6N) is the Fukui function [8]. 

4. Modelling of the bond electronegativity and bond hardness 

The bond electronegativity and the bond hardness can, in principle, be calculated 
from the expressions 

- 1  
- ~pp(r) dr 

Jts qbond 

~bond = f ~Tbond(r)fbo.d(r) dr, 
3 n~o.~  ( , ) - 

1 f t~2F , 
t~p(r)6p(r,)P(r ) dr' 2qbona d 

(18) 

where the integrations are to be performed over the bond region only. 

As already has been mentioned, the bond electronegativity (chemical potential) 
at the equilibrium distance is approximately given by the sum of the atomic 
electronegativities (chemical potentials). However, modification of the chemical 
potential in the bond region would also be contributed to by the compression of 
the atoms. Our plan here is to model the bond electronegativity and the bond 
hardness so as to reproduce or predict the other quantities. 

For simple homonuclear diatomic molecules, equations can be rewritten for the 
dissociation energy De, the bond charge Q-= qAB (a. negative number) and the 
electronegativity of the molecule, X ~~ as follows: 

D~=-(Xo-X)Q-�89 k - ~ ) Q  2= Q -~(Xo-X) ,  (19) 

- ( X o - X )  

Q =  07 +2"qo - 7 .  k. 1/R)' (20) 

Xmol = Xatom--Q [ r] - 3 .  k . 1 ] ,  (21) 

where 9(0 and rlo are the bond electronegativity anff hardness. Equations (19)-(21) 
are in atomic units. If X and r t are to be expressed in electron volts, the terms 
involving the dielectric constant k must be multiplied by 27.212. 

Table 1 presents numerical results for the values of bond electronegativity and 
hardness that consistently conform to the known values of De, .~mol and the bond 
charges of Parr and Borkman [21] for some simple diatomic molecules. The bond 
hardnesses are lower than the atomic ones while the bond electronegativities are 
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higher than the atomic values (X < Xo < 2X). The values of the dielectric constant 
(k) indicate that it depends on the nature of  the bond; for multiple bonds, the 
screening is stronger. All these values correspond to the equilibrium distances. 
The formalism should, however, be equally applicable at other intemuclear 
distances, provided the R-dependences of  Xo and ~70 are suitably modelled. We 
now turn to that. 

In the PPP theory [30], the quantity (I-A), the atomic hardness, is a measure of 
the intra-atomic electron repulsion integral. Analogously, the bond hardness here 
can be thought of as a measure of the interatomic electron repulsion, and 
consequently, as in the PPP theory, this term can be modelled by R-a dependence. 
Such a reciprocal correlation of  atomic hardness with the covalent radius has 
been earlier proposed [27]. More complicated dependence (for example, log ~7 
varying as log R -1) has, however, been shown to lead to better correlation [36]. 

For modelling the bond electronegativity, one can proceed in several ways. Since 
the bond center has constant density (7p  = 0), the kinetic energy can be modelled 
after the Thomas-Fermi (perhaps in one dimension) or particle-in-a-box model 
[37]. Bond chemical potential then can be evaluated rigorously. However, it has 
been argued that the resonance integral (which corresponds to bond electronega- 
tivity in this model) involves mainly a kinetic contribution [38]. In the bond 
charge model of Parr and Borkman [21], the kinetic energy was modelled as an 
R -2 dependent term. Therefore, as an initial attempt, we take the bond elec- 
tronegativity to have a similar dependence. Rationalization of this R -2 modelling 
follows also from Politzer's work showing that ( Q / R  2) at the equilibrium distance 
approximately represents the bond order (Prs) [28]. Comparing (14) with the first 
three terms of (7), it is clear that the Prs firs term represents (Q/R2)(l.ZbondR2). 
Hence, since prs ~ Q / R  2, the resonance integral /3rs-  ].tbond " R 2 ;  that is, /Zbond 
flrs/R 2, which suggests a R -2 dependence of  the bond electronegativity. We 
therefore assume 

C1 
Xo=X+~-5 (22) 

and 

C2 
~7o R (23) 

The dissociation energy (19) can now be written as 

Q~ CI Q 
= -1~7Q2- (c2 -�88 R 2 . (24) 

At R = Re, De denotes the equilibrium dissociation energy; for other neighboring 
values of R, (24) shows a close connection with the Parr-Borkman bond-charge- 
model energy expression, namely [21], 

E = Wo+ W1/R+ W2/R 2. (25) 
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Table 1 presents the numerical values of C1 and C2 obtained from the equilibrium 
properties, for a few molecules. Also given are the values of C'2( =- C2/k) defined 
by 

C~ (26) ~/0=k �9 - - .  
R 

It is interesting that for several diatomic molecules, the value of C~ is very nearly 
a constant. The average value of C~ is 32.51• 1.42 eV. Near constancy is also 
observed in the values of C~ for a given class of atoms. 

Politzer has proposed [24] that the constant term W0 in the Parr-Borkman model 
energy expression (26) is related to Q2 by 

Wo = B.  02. (27) 

Politzer found a linear correlation of B with the ionization potentials of the 
atoms. Correlation of B with 1~Re was also fairly good. Comparison with (24) 
shows that the constant B can be interpreted as ~7/2; this rationalizes the 
correlations observed by Politzer. Pasternak attempted to interpret this term as 
an expansion of the type aQ q- bQ 2 from consideration of charge transfer when 
the atoms are separated to infinity [25], Our ( !  9) will lead to this result with 
a /z and b = = ~7 if the constant term in the modelling of Xo by (22) is properly 
chosen. One may also mention a different aproach to Wo by Ohwada [40] which 
is based on an effective nuclear charge model. 

The modelling of bond electronegativity and hardness by (22) and (23) is only 
illustrative. However, the near constancy of the parameters C1 and C2 indicates 
that such modelling is meaningful at least for studying the properties at equili- 
brium for homonuclear molecules. The prediction of the full potential energy 
curve, although of much interest, has not been attempted here and could be 
achieved only through better modelling of the R-dependence of these quantities, 
especially the bond electronegativity term. Of importance is the study of the 
chemical potential of the molecule as a function of internuclear distance, on 
which work has started only recently [41]. 

5. Concluding remarks 

The concepts of electronegativity and hardness for the bond region introduced 
here provide a means for investigating covalent binding through the electronega- 
tivity picture. This gives a generalized electronegativity equalization scheme and 
a method for the calclation of partial charges as well as energies for molecules. 
Although the present calculations have been restricted to simple diatomics, the 
formalism and the concepts are general enough also to describe complex cases. 
The approach is a semilocal or regional approach to DFT and as here formulated 
constitutes a semiempirical density functional theory. 

Such a density functional model can be thought of as a dielectric model which 
considers the atoms and molecules as a dielectric medium [42]. Other dielectric 



390 S.K. Ghosh and R. G. Parr 

mode l s  for  d ia tomics  have also been  p r o p o s e d  ear l ier  [43] in the spir i t  o f  Phi l l ips  
[44]. The recent  work  o f  Pearson  cons iders  a two-way  flow to t ake  into account  
the de loca l i za t ion  o f  e lec t ron  dens i ty  co r r e spond ing  to cova len t  b o n d i n g  [5]. 
Elec t ros ta t ics  is deep ly  connec t ed  to chemica l  b ind ing .  F o r  p o l a r  bonds ,  an 
e lec t ros ta t ic  m o d e l  has been  p r o p o s e d  by  Benson  [45]. 

The p resen t  m o d e l  p rov ides  a scheme for ca lcu la t ing  the chemica l  po ten t ia l  of  
a molecu le  f rom that  o f  its cons t i tuen t  a toms.  A l t h o u g h  such me thods  a l r eady  
exis ted  for  he t e ronuc l ea r  d i a tomics  which  cons ide r  a tomic  e lec t ronegat iv i t ies  
a lone,  they  fail to p red ic t  chemica l  po ten t i a l  changes  for  h o m o n u c l e a r  d ia tomics .  
The concep t  of  b o n d  e lec t ronega t iv i ty  thus  b r o a d e n s  the  scope  o f  electro-  
nega t iv i ty -based  theories .  

The connec t ion  with the  P a r r - B o r k m a n  b o n d  charge  m o d e l  is only  i l lustrat ive.  
A more  accura te  c o m p a r i s o n  could  be d e v e l o p e d  by  more  correct  mode l l i ng  o f  
the R - d e p e n d e n c e  o fxo  and  70; this also w o u l d  pe rmi t  p red ic t ing  correct  po ten t ia l  
energy curves as well  as chemica l  po ten t i a l  curves.  

It may  be no ted  that  the  b o n d  e lec t ronega t iv i ty  is, in a sense,  a " p a i r  e lec t ronegat iv-  
i ty" [ 4 6 ] - - b e c a u s e  it is an e lec t ron  pa i r  (par t i a l ly  o f  course)  which is a c c u m u l a t e d  
in the b o n d  region  whereas  the  e lec t rons  that  come f rom the a toms  usua l ly  are 
single e lect rons  (again  par t i a l ly ) .  

The fact  that  Xo and  r/o are  ana logue  o f  the  pa rame te r s  o f  Hi ickel  theory  and  the 
mod i f i ed /3 - theo r i e s  o f  Lenna rd - Jones ,  L o n g u e t - H i g g i n s  and  Sa lam [29] suggest  
that  the react iv i ty  indices  i n t r o d u c e d  by  C o u l s o n  and  L o n g u e t - H i g g i n s  [47], via, 

the self  and  mutua l  po la r i zab i l i t i e s  o r ig ina l ly  def ined th rough  the pa rame te r s  o f  
Hfickel  theory ,  can be redef ined  in terms o f  dens i ty  func t iona l  concepts .  Indeed ,  
the semi loca l  genera l i za t ion  o f  the  ha rdness  kerne l  as well  as the sof tness  leads  
d i rec t ly  to the  concepts  o f  self  and  mutua l  softnesses.  

More  work  on these  several  ideas  shou ld  prove  i~rofitable. 
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